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Orbits about the Sun-Earlh 11 and 12 Iibration poinfs have beccmlc very popular for space
physics and astrophysics missions. Due to the hyperboliciiy  of the region of phase space
where those orbits are found, ttmy are diflicu/t to compu!e an(i analyze. 7he invariant
manifo/d struclure provided by (iynamica/ syskm?s  theory have been usefu/ to compute
transfer trajectories between orbits. 7hese methods are very promising and require further
development. This systematic approach is a great irr?provemcmt from the difficult and
/abor-intensive numeric:d search methods current/y popu/ar in the astrodynamics @mmu-
nity for studying these orbits. 1 he geometric mmstraints and mission critical issues are
discussed to give the numerical dynamical systems community scm~e insight into the prac-
tical considerations and important prob/ems of interest 10 the space mission designers. /1
is hoped that this communication will lead to mom fruitful cxcl)angcs between the two
communities.

1. 1 he Three Body Problem and Space Missions

1 he 1 hree Body [’roblem  has intrigued some the greatest n)inds  of the last three centuries and has stimulated
the development of science as few prctiems  have. l-he crowning actlievement is the qualitative method
introduced by Poincare from which moden clyrmrnical  systems theory is derived. 1 he advent of the computer
age brought in a new revolution whereby Imwiously undreanled-of numerical experiments can be performed by
the stroke of a few keys. 1 his blurred tlw distinction between quantitative and qualitative methods in the
following sense. Qaulitatitve methods not only provide a global understanciing of the dynamics but now serve
as essenfial  guides in the numerical cornpulalioris of dynamical quantities.

Parallel with the development of computers, space exploration also took its first steps in the past 50 years.
Suddenly, the formerly important but academic three bocfy problcm is discovered to have practical significance
for space missions. On AUgU!A  12, 1978, tt~e Irdernational  Sun-[ :arth E-xplorer-3 (ISEE 3) was launched toward
the interior Sun-E arlh Iibration point, 11, and inserled  into a “halo orbit” around L 1 under the direction of Dr.
Robert W. Farquhar.  Now periodic orbits and quasipericjdic;  orbits c)f the three body problem have taken on a
completely new significance. They have becc)rne “prac!ical  and usefulo”. Along with utility comes the engi-
neering issues and all the complexities c)f actually flying suctl a mission.

}+owever,  there is currently a gap bctvveen the astrodynamics  and dyr]amical  systems communities. The pur-
pose of this paper is to narrow that gap by ir][roducing the problems and methods to both communities. 1 hereby
it is hoped that an exchange of ideas between the two would follow resulting in collaborations and new devel-
opments in the ttmory and applications of ttle three body problem to future space missions. While quasiperiodic
orbits about the Iibration points are extren~ely useful for curreni  space missions, their significance for the ex-
ploration of the solar system has only brwn g~irnpseci.

2. Orbits Around L1 and 1.2

For the purposes of this discussicm,  it suffices to use the circular restricted three body problem (RTE3P).  In this
model, the two primary bodies are moving in circular orbits abotJl their common center of mass and the infint-
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essimal  third body moves uder the gravitation c~f the primaries VJithOLJt Oxertirlg  any gravitational force on the
primaries in return. Fig. 1 depicts the Sun-[  aritl-Spacecraft  system in rotating coordinates with the origin is at
the center of mass; the X-axis containir)g the two primaries with tlw Sun to ttle left and the EIarth to the right, the
Z-axis is normal to the Ecliptic, tfle orbit plane of the primaries, and ttie Y-axis completes a right handed coor-
dinate system. E:uler discovered three collirlear  equilibrium solutions on the X-axis, Iabelled L1 to 13.
l.argrange discoverd the two equilateral trianguku equilibrium sollJtions, Iabclled L4 and L5. The Iabelling
convention used here is the most prevalent in the astrodynarnics  Community, afthough by no means standrad.
The equilibrium points are collectively krlown as the Iibration points c~r the L agrangian points.

1 he equations of motion is as follows:

x “ -2y  ’=ux
y“-z)(’=uy

z “ == Uz
where

u = 1/2 ( XA2 + yA2) + (1 -n{)/d  + m/r
m = normalized mass parameter of the E:arth-Sun  E /(S+ E),
d = distance of the infinitessirnal  mass to the first primary,
P1 = [ (x+m)A2  + yA 2  + zA2]A1/2
r = distance of the infirlitessimal  mass to the second primary,
P2 = [ (x-l+m)A2  + yA2 + zA2]A1/2

l’he normalization sets the sum the mass of PI and P2 to 1, tfle distance LMween P1 and P2 to 1, and the
angular rate of PI and P2 around one ancdtmr to 1 (period 2 Pi). See Szebehely for the derivation.

L1, L2, and L3 are unstable equilibria, while 1.4 and L5 are stable equilibria for planetary mass ratios (see
Szebehely, 5.5). We will limit our discussiorl  to 11 and L ? in this paper since the other Iibration points are
currently not as useful for space missions.

Linear analysis about L1 and L 2 indicates that there are two families of periodic solutions for the linearized
system - planar periodic oribts and verlical simple Ilarmonic nlotion:

x =- -A Cos(at+  f),
y=k(a)ASin (at+ f ) ,
z = BSin(bt+ g ) ,

Both the family of periodic orbits of the jirwarizcd system may be coniinued to periodic orbits in the RI BP.
These “modes” may be combined tc) form quasiperiodic  orbits aboul I 1 and 1..2 known as Iissajous orbits as
their YZ-projecliorl  is the familiar Iissajcws  pi~tt(>rn.  When ttle Y-amplitucle, k(a)A, reaches a certain size (about
645,000 krn for the Sun-Earth syslem),  depending on the mass parameter, the frequencies a and b become
commensurate thereby producing a perioclic  orbit known as a halo orbit. Note that this is very far from tfle
Iibration point and well beyond the region of validity for the linear expansion. This periodic orbit comes about
from higher order nonlinear effects tt)rough a rejation between the am~)liludes  A and B. Thus for halo orbits,
there is effectively only one amplitude. 1 hero are also large quasiperiodic ocbits on tori around the halo otilts
also known as Iissajous orbits. In the $un-EIarth system, all of these orbits have periods of about 6 months. All
of these C)rbitS are unstable except fc)r very large arnp[itudes where there is a narrow region of stability. For the
Earth-Moon L1, for 73,000 km < El <74,5010 km, there is a banci of stat de halo orbits (Breakwell and Brown).
Plots of the various projections of the lissjoLJ$  orbifs arc given in Figures 2 and 3 at the end of the paper.
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3. Why 1 ibration l’oint Missions?

Why are Iibratiorl point orbits useful IC) space nlissic]fls?  Why is {hero  suddenly so much interest?

11 is in a sentinel position between the f arlh and tl~e Sun. “1 his is an ideal location for solar-terrestrial exper-
iments such as the ISEE:3, SOlar t Ieliosl)lleric Observatory (SCN {0), Advanced Composition Explorer (ACE)
and Suess-Urey Discovery (SU) missions (see Iis{ at end of section for brief description of missions). An orbit
about L 1 provides continuous viewing of ttm Sun and the scalar wind outside the geomagnetosphere, a contin-
uous link to the [ arth, a constant thermal erwironnwnt,  and constarll power for spacecraft through the solar
panels. Similarly, an orbit about L? is ideal to study the gec)tail  anti its interaction with the solar wind such as
for the GFOI-AII. mission. And there is an easy ancj inexpeflsive hctcrc~clirlic  transfer orbit from an orbit about
L 1 to an orbit about 12 requiring no more than 6 nicmths for Iransfer. f i{]ure 2 plots the three projections of the
orbit for the SU mission currenfly being proposed 10 NASA. 1 his is a large ampiitllde Iissajous orbit. 1 he goal
of SU is to collect and return samples of tlw ophemral solar wincj particlc!s  in an orbit around L1. The orbital
dynamics and nlission design wilj be discussed in the next section.

The 12 region is ideal for astrophysics cxlwrimcnts  such as the F ar infraFled E xplorer  Mission (F IRE) and
Primordial Stuctures Investigation Missio[] (PSI). An orbit abclut L 2 provides a stable and cold environment
perfectly suifed for infrared and microwave telescopes. More than half of tlic celeslial sphere is available at all
times for observation so that in 6 rr~orlths’ time, a complete survey of tlm sky can be made. Similar to the L1
situation, the communications geornotry,  ttle power and thermal environment are nearly constant here. Figure
3 plots the three projections of an orbit fc)r both the 1 II]E: and F’SI. 1 hese missions are cosmic microwave
background (CMEI) radiation experinwr]ts following in the footstep c}f t}w famous COBE Mission which deter-
mined the aniscdropic clumping of rnatler in tile universe. ‘1 he instrumclds to detect CME3 radiation (around 3
deg Kelvin) need to stay very cold hence a small Iissajous orl)il arourd  L 2 is icieal. In contrast, the COEW
mission used at) orbit around Earth.  Note also that a Iurlar swingby was used to steer the spacecraft into orbit
around 12 for PSI and F IRE.

Why is a constant environment so imporlarlt? F ronl the science point c]f view, it is higli[y desirable to have all
observations made in a constant envirc)r!nwrd  to r’t?dUCe error sources ancj uncertainties which simplifies the
data reduciion, generally a massive task in ilself. I rom the instrument arid spacecraft point of view, a constant
environment is less stressful on the hardwart?, rlwch easier to design and trouble shoot should anomalies occur.
From the operations point of view, a ccmstant  environment greatly simplifies planning activities both before and

after the launch. of course, this elegant solutic]r!  uhinlatcly translates tc) lower cost and greater savings in
almost every aspect of the entire nlissic}ll  life cycle.

Compare with a typical low Earth mission wittl a peiorcl  of one to two hours. Within every period, the Earth
occults the Sun; this changes the temcpraturc af~d the resulting stress causes jitfer in the instruments. While
in shacfow, batteries must supply tlw necessary power; tl I is irlcrcases  tt w spacecraft mass and complexity.
Depending on the mission one may or may tmt ward to see the Surl. Infrared telescopes typically require
sub-kelvin coolers and the telescope I)orestgllt must always Lw 80 to 90 degrees away from the Sun and the
Earth’s limb. Add to this the constantly and ciuickly changing cornmuncalions georrletry  and you have less than
500/.  of the time where you can make observatiorls  per orbit. The constant slewing of the telescope to avoid
the Sun and Earlh, or pointing of the ante[lna for comrnuncatiorls  all add to a highly labor intensive and complex
mission operations which is more costly.

Another driver which favors Iibraticm point missions in the current erwironment  is the ease with which the orbit
can be achieved in Cornparisorl  wifll  c)ttler interplanetary ntissions. A direct jaunch from Earth to a halo orbit
requires about 3 months. The trarlsfer for a mission to Mars requires atmut 1 year, to Jupiter requires about 3
years, and to F’luto abouf 10 years. ‘1 he launch energy to achieve a halo orbit is less than that for a mission to
orbit the Moon. ‘[he launch energy is rneasureci  by a quantity calleci C3 equal to twice the keplerian orbit
energy. (The origin of the term C3 is unkown, bld the cmnstanl  of tl]e vi$-viva intf?gral, E quation 19 of Section
87, in Moulton’s “An lr~troductiorl tc) Celestial Mechanics” is called C3 anti is likely the source of this
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terminology.) For halo orbits, the C3 is -0.6 (krnkwc)A2,  the Ileagative sigtl indicating that it is still bound to the
E arth.  for a direct Mars transfer, the C3 is around 10; for Jupiter, the C3 is around 60, for Pluto, it’s around 200.
1 bus, it takes less time and less launch capability to get to a halo orbit thal~ fOr aln”rost any other interplanetary
mssion. ‘1 his translates to lower launch cost whictl is always a significarlt part of ttle overall mission cost.

F“or this discussion, all costs exclude ihc launch vehicle ancj arc in 1995 dollars. 1 ypical mission costs have
dropped from the billion dollar range to as Ic)w as $35 million ill some cases A few of the Iibration point missions
we have proposed are in the $60 to $100 rllillion ran9c. ‘1 hese factors, combined with the current detector
technology which enabled some of these new missicm ccmcc!pts,  have brOUCJht  Iibration point trajectories to the
forefront of space physics and astrophysics missions. 1 able 1 at the end of fhe paper lists the current and some
of the proposed missions using Iibration poini  trajectories.

4. 1 rajectory  Design Issues

In general, finding individual Iissajous and hale) orbits is not difficult. By exploiting the symmetry of halo orbits
with respect to the xz-plane, one can easily find a halo orbit iteratively. Pick some point (x,O,Z)  near L1 or 1.2,
pick an initial velocity (O,V,O), the form $UggeSled by tlhe symmetry, and integrate the equations of motion.
Change v slightly until a periodic orbit is achieved. Both x and z may need to be moved about since these orbits
are not dense in space. Using the variaticmal  equation, a newton scheme can quickly find these orbits provided
a very good initial guess is given, [.issajous clrbits CIO not have this symmetry property and are found by parallel
shooting methods (Howell & Pernicka). 1 IIC inilial guess is ~Jrovided  by a third order Linstedt-Poincare expan-
sion for Iissajous orbits (Richardson). Slmo’s group have conlputc!d these series to order 35 with various
models providing extremely accurate scdutions (Simo, Gcmwz, Llbre, ancl Martinez).

A Mission to 12

l-he challenge is in finding an orbit with useful properties, We examine some astrophysics missions at L2. The
PSI and FIRE spacecrafls are desigrled  to spin slowly arcwnci  an axis pointed at the Sun (Lo, tiowell,  and
Barden). The instruments are mour]ted perpendicular to this axis so the Imresight  is always 90 deg away from
the Sun and the E arth and is never ex~xmecf  to their radiatiorl. As the spacecraft slowly spin about this axis, the
instruments map out a great circle swath c)f the celestial sl)here, mapping the entire sky in 6 months. 1 he
antennae and the solar panels are fixecj at the’ back of the spacecraft which is always pointed at the Sun.
However, the antennae have a narrow bcarnwidth  and ttle data rate is high enough that a small Iissajous orbit
must be used in order to guarantee the dala rate without the ncecj to steer the spacecraft from its Sun-pointed
orientation (a fixed antenna is not pointable except by moving the entire spacecraft which is undesirable for
these mission geometry constraints). 1 hus i~ small amplitude (120,000 knl) Iissajous orbit was selected. 1 he
amplitude is like the maximum radius of ttle orbit. EWt,  ttle ~)roblem  with srrlall  Iissajous orbit is that it requires
about 100 to 150 rnh of delta-V (change in velocity using thrusters and propellant) to inserl into the Iissajous
orbit. Since the total propellant capability clf tlw mission is about 200 m/s post-launch, this is significant. A lunar
swingby is used to reduce this insertion delta-V to 15 mki following the design for the Russian F{E1 lCl 2 Mission
(Dunham).

A Mission to 1.1

We examine, next, a solar physics missicm tc) 1.1. The SU Mission (1 o, t Iowell, and Barden) will spend two
years in a large amplitude Iissajous orbit about 11 to collect samples of tlIc solar wind and then bring it back to
earth. Unlike the astrophysics missions, it has very little data to downlirlk so ttle antenna pointing is not a
problem. Consequently, it can use a large lissajcms orbit (300,000 km Z amplitude, 700,000 km Y amplitude)
which lowers the delta-V required to inserl into the Iissajous orbit to a negligible 5 m/s. (The ISEE3 halo orbit
is 120,000 km by 666,000 km in ttle corresponding amplitudes. ) tiowever,  the return segment to Earth is a
challenge. Since the sample capsule will be captured by tlelicopters at a preselected site in Utah, the return
must occur during the day time to facilitate the capture. Urlfortunately,  the dynamics of the problem favors a
direct return on ttte night side. 10 fcwce a cjirec;t  return on the dayside is prohibitively expensive and well beyond
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the 300 rrtis total delta-V capability clf the SU spacecraft. T ho situation wcwld  be very different if it were re-
turning from 12, t lowever, we have clbserveci heteroclinic  tbehavior  between orbits around 11 and L 2. Using
this observation, the spacecraft was Serlt to 12 aller  departing 1.1 tc) turrl il around for E arth return on the day
s i d e

1 he 1 ransfer Problem

1 he transfer problem is a significant problen) itl the trajectory design for a mission to 11 or 12. Even without the
lunar swingby mentioned earlier, ttlis is a difficult problem F arquhar and Dunham computed this trajectory
directly from forward integration even in tile CZISC c)f lunar swingbys.  Arlcdher’ approach is to integrate back-
wards from a halo orbit. 1 he instability of ttle dynamics makes it very easy tc) depart. However, the transfer
trajectory must connect IJp with a ty~)icjal 200 km circular launch cwbit at 28.5 deg inclination. I“hus timing
becomes a problcrn  because the real system is norl-autonc)rnous.  If orw shifts the time Lry some amount, the
Iissajous orbit is ncl longer “there”. Arlc)ttwr  Iissajous orbit rlwst be computed to accommodate the new times.
Needless to say, the entire process is complicated and labor interlsivc especially when a lunar encouter is
required. 1 he problem is highly nonlinear and it is cxtrernely  difficult to firld an end-to-end trajectory satisfying
all the constraints. 1 he optimization of the rrlarmuvers alcmg [he trajccfc)ry  further complicates the analysis.
Consequently, it is virlually impossible to perfcmn  any in de}lth pararnctr’i[:  stucjies.

1 his is a result of the lack of integrals so there are nc) orbital elements wit}]  which to parametrize the orbit design
space. While it is true that missions with multiple planetary flybys such as the Galileo Mission are operating in
the N-bocjy regime, their energy is much higher “1 he flyby trajectories are hyperbolic orbits with large positive
C3. Whereas the C3 for Iibration point rnissiorls is very close to O. ‘1 his Iciw C3 is much closer in energy to thaf
of the Iibration points. It is in this region of ttle phase space that chaotic phenomena and nonlinear effects are
observed. 1 his is why conic approxinlaliorls  arc completely unsuitable for this regime, but are excellent for
planetary flybys. In order to understand ancj control the dynamics arcwncj  I 1 and 12, we must turn to dynamical
systems theory where great strides have been made in recent years bottl in theory and in applications to engi-
neering problems.

5. 1 he Need for Dynamical Sysfms  1 treory

The rich structures and methods available in rnodclrr dynarllical systems ttleory have not been seriously con-
sidered by most astrodynamicists in the United States. 1 tie I;uropcar] Space Agency (Flodriguez-Canabal;
Simo, Gomez,  I Ibre, ancj Martinez) and the Moscow Space F{esearctl  Institute (Eliasberg,  Timokhava, and
Boyarski) in the 80’s began studying the corltrol of a spacecraft in halo c]rbits using invariant manifold theory.
The basic idea is to project the spacecraft state onto the stable and urlslable manifolds of the halo orbit and
cancel out the unstable components with a rnaneuvcr  ancf let the stable rilanifold bring the spacecraft back into
a nearby halo orkit on the center manifcdd. “l”his  approach can greatly reduce the station keeping delta-V. For
ISEE3 the actual stationkeeping was 8 r~u’sec/year, It was a propellant-rich mission with little need for
efficiency. With the stable manifold ccmtrcd strafegy, this can be reduced by several orders of magnitude to a
few mm/see/year. But, it requires more frequent orbit determinatic]n and maneuvers which can be costly.
Nevertheless, this strategy can be nlacje practical arid has .sy)urred  the cc)rilfnurlity to rethink the station keeping
requirements.

Current estimates for stationkeeping near tlw Iibration points is about 4 m/s/year with maneuver frequency of
once every 4 to 8 weeks using traditiorlal nwthocis. Wllettler  it’s 4 c)r 8 rids/year, this delta-V requirement is
insignificant in comparison to maneuvers required for ttle launch error cc)rrection  (requires > 100 m/s) or the
halo orbit insertion (150 inks). Despite the elegance and originality of the stabte manifold control, it has not been
adopted by any mission to date. In the mimfs of ttle project managers, ttle benefits of this new approach is
perhaps insufficient tc) warrant the changes required in the rrlission design and operations world to accommod-
ate this new method.

However, what they did not realize is that this approach opened up an entire new vista for mission and trajectory
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design. Invariarlt  manifold theory can be applied to many othcl’ aspects of trajectory design besides station
keeping. It offers the possibility to paranwtrize tlte orbit space SC) tha! erltire farnilics  of qusiperiodic orbits can
be investigated. It offers a coherent tl”rcc)ry  describing hitherto irlexplicablc phenomena. It provides intuition
and insight into the behavior of orbits that have been fuzzy and mystcric)us  except to the few who have been
rrumcrically  exploring this region of the phase space. F inally, this global approach is providing new handles
from which new algorithms can be and have been developed to compute precise orbits with prescribed prop-
erties as required by the mission. I hus entire families of orbits can now bc systematically computed in contrast
to single orbits painstakingly conjured OLJI of progran)s by tricks with slot of bloocj, sweat, and tear.

I {ere is an application of the invariant manifold theory we have used for some of our acjvanced  mission
concepts. We call this method the slablc? manifcdd transfer.’1 he launch protdern has been greatly helped by an
understanding of the stable manifolds of t~alo c)rbits. Since Ilalo orbits arc periodic, using F-loquet theory, their
stable manifold can be quickly computed (E\ar’den) Ely firldirlg the pc)irll c)rl the stabfe manifold closest to Earth,
a candidate trajectory can be identifieci for a launch trajectory. UsuaHy,  the stable manifold does not approach
the [-arth as close as 200 km. tlowcver,  having idwltifiecl the n-lost  favorable trajectory on the stable manifold,
we have also identified the most favorable inserlic)n  point. lly adjusting a maneuver at the insertion point and
the launch condtions,  a launch trajectory can be quickly found If] tile case of the lunar transfer, one simply
looks for where ttle stable manifold con)cs c:losest  to tho Iurlar orbit and acjjust the timing accordingly to effect
a lunar swingby. This was how the PSI and F: IRE trajectoircs were ciosiglwd.

It has been observed by some, incorrectly, that the stable manifold rnethc)ci  is just backwards integration. The
stable manifold transfer algorithm provides ii systematic approach tc) generate the initial states for the back-
wards integration, It automates what is cdherwise  a manual tdind-search  process. F’urtherrnore,  it discriminates
amongst the uncountable families of tmjeclorics  going from the E arlh to the hale) orbit to provide an optimal
transfer.

Another application, mentioned earlier, is the use of ttle heteroclinic  transfer between Iissajous orbits for the SU
Mission. Prior to this approach, the intensive searctl  for the return trajcctclry yielded next to nothing. Once this
connection was made, the heteroclinic  trarlsfer  method quickly pt’OdU~@d arl end-to-end trajectory which re-
turned the spacecraft to a difficult site C)rl ttw day side. Ccmvcntional rnetllods  used by another team of orbit
designers produced trajectories whictl required more dells-V and were still unable to reach the Utah site
required.

1 he PSI, FI13E, and SU case StUdieS,  as well as the wc)rk dorm by the f uropean groups, clearly indicate the
central role dynamical systems melhods  play in Iibration point trajectory ck!sign. It is an irony of history that the
discipline giving birth to dynamical systenls  stloulcf now be one of the last to consider its application.
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Fig.:3 Suess-Urcy  “l-rajectoty
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